Wholeness as a hierarchical graph to capture the nature of space
نویسنده
چکیده
According to Christopher Alexander’s theory of centers, a whole comprises numerous, recursively defined centers for things or spaces surrounding us. Wholeness is a type of global structure or life-giving order emerging from the whole as a field of the centers. The wholeness is an essential part of any complex system and exists, to some degree or 10 other, in spaces. This paper defines wholeness as a hierarchical graph, in which individual centers are represented as the nodes and their relationships as the directed links. The hierarchical graph gets its name from the inherent scaling hierarchy revealed by the head/tail breaks, which is a classification scheme and visualization tool for data with a heavy-tailed distribution. We suggest that (1) the degrees of wholeness for 15 individual centers should be measured by PageRank (PR) scores based on the notion that high-degree-of-life centers are those to which many high-degree-of-life centers point, and (2) that the hierarchical levels, or the ht-index of the PR scores induced by the head/tail breaks, can characterize the degree of wholeness for the whole: the higher the ht-index, the more life or wholeness in the whole. Three case studies applied to the 20 Alhambra building complex and the street networks of Manhattan and Sweden illustrate that the defined wholeness captures fairly well human intuitions on the degree of life for the geographic spaces. We further suggest that the mathematical model of wholeness be an important model of geographic representation, because it is topological oriented, which enables us to see the underlying scaling structure. The model can 25 guide geodesign, which should be considered as the wholeness-extending transformations that are essentially like the unfolding processes of seeds or embryos, for creating built and natural environments of beauty or with a high degree of wholeness.
منابع مشابه
Characterizing imageability in Gajar houses of Tabriz
Aims: From Lufor’s perspective, space is constructed based on spatial operation, recreation and the space in which recreation takes place. This approach is a descriptive view of the relationship between space from a materialistic point of view and its dominant ideas with its dwellers. In this perspective, humans integrate distinct and indistinct data of space and create map-like mental images f...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملVector Space semi-Cayley Graphs
The original aim of this paper is to construct a graph associated to a vector space. By inspiration of the classical definition for the Cayley graph related to a group we define Cayley graph of a vector space. The vector space Cayley graph ${rm Cay(mathcal{V},S)}$ is a graph with the vertex set the whole vectors of the vector space $mathcal{V}$ and two vectors $v_1,v_2$ join by an edge whenever...
متن کاملOn the Zagreb and Eccentricity Coindices of Graph Products
The second Zagreb coindex is a well-known graph invariant defined as the total degree product of all non-adjacent vertex pairs in a graph. The second Zagreb eccentricity coindex is defined analogously to the second Zagreb coindex by replacing the vertex degrees with the vertex eccentricities. In this paper, we present exact expressions or sharp lower bounds for the second Zagreb eccentricity co...
متن کاملUncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Geographical Information Science
دوره 29 شماره
صفحات -
تاریخ انتشار 2015